Appnwire 1 2 1

Posted on  by
Trigonometric Identities
(Math Trig Identities)
sin(theta) = a / c csc(theta) = 1 / sin(theta) = c / a
cos(theta) = b / c sec(theta) = 1 / cos(theta) = c / b
tan(theta) = sin(theta) / cos(theta) = a / b cot(theta) = 1/ tan(theta) = b / a
sin(-x) = -sin(x)

Version 1.2.1: Updated our 'Featured Apps' section inside the Preferences window; Updated 'Our Apps' menu in the upper left side of the screen. We're sorry but jw-app doesn't work properly without JavaScript enabled. Please enable it to continue. Tap size: NF/NC UNF/UNC: Threads per inch: Basic major dia (inches) Basic effective dia (inches) Basic minor dia of ext. Threads (inches) Basic minor dia of int. Threads (inches).


csc(-x) = -csc(x)
cos(-x) = cos(x)
sec(-x) = sec(x)
tan(-x) = -tan(x)
cot(-x) = -cot(x)
sin^2(x) + cos^2(x) = 1 tan^2(x) + 1 = sec^2(x) cot^2(x) + 1 = csc^2(x)
sin(x y) = sin x cos y cos x sin y
cos(x y) = cos x cosy sin x sin y

tan(x y) = (tan x tan y) / (1 tan x tan y)

sin(2x) = 2 sin x cos x

cos(2x) = cos^2(x) - sin^2(x) = 2 cos^2(x) - 1 = 1 - 2 sin^2(x)

tan(2x) = 2 tan(x) / (1 - tan^2(x))

sin^2(x) = 1/2 - 1/2 cos(2x)

cos^2(x) = 1/2 + 1/2 cos(2x)

sin x - sin y = 2 sin( (x - y)/2 ) cos( (x + y)/2 )

1 2' Wire Mesh

cos x - cos y = -2 sin( (x - y)/2 ) sin( (x + y)/2 )

Trig Table of Common Angles
angle 0 30 45 60 90
sin^2(a) 0/4 1/4 2/4 3/4 4/4
cos^2(a) 4/4 3/4 2/4 1/4 0/4
tan^2(a) 0/4 1/3 2/2 3/1 4/0
Appnwire 1 2 1Given Triangle abc, with angles A,B,C; a is opposite to A, b opposite B, c opposite C:

App Wire 1 2 1 2 In Fraction

a/sin(A) = b/sin(B) = c/sin(C) (Law of Sines)

c^2 = a^2 + b^2 - 2ab cos(C)

b^2 = a^2 + c^2 - 2ac cos(B)

a^2 = b^2 + c^2 - 2bc cos(A)

(Law of Cosines)

App Wire 1 2 1 2 Be Frozen

(a - b)/(a + b) = tan [(A-B)/2] / tan [(A+B)/2] (Law of Tangents)